MATHEMATICS JEE ADVANCED 2024 MOCK 3

Section 1

Four questions | +3/-1 Marks. ONLY ONE of the four options is correct in each question.

1. For the differential equation

$$y\cos\left(\frac{y}{x}\right)(xdy - ydx) + x\sin\left(\frac{y}{x}\right)(xdy + ydx) = 0$$

when $y(1) = \frac{\pi}{2}$, the solution is

(a)
$$xy \sin\left(\frac{y}{x}\right) = \frac{\pi}{2}$$

(b) $xy = \frac{\pi}{2} \sin\left(\frac{y}{x}\right)$
(c) $xy \sin xy = \frac{\pi}{2}$
(d) $\frac{y}{x} \sin \frac{y}{x} = \frac{\pi}{2}$

2. The function $f: \mathbb{R} \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} e^{-\frac{1}{x}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

then at x=0 which of the following is correct

- (a) f is not continuous
- (b) f is continuous, but not differentiable
- (c) f is differentiable, but f' is not continuous
- (d) f is differentiable, and f' is continuous
- 3. If $\vec{px} + (\vec{x} \times \vec{a}) = \vec{b}; (p \neq 0)$, then which of the following is/are true

(a)
$$\vec{x} = \frac{p^2 \vec{a} + (\vec{a}.\vec{b})\vec{b} - p(\vec{a} \times \vec{b})}{p(p^2 + |\vec{a}|^2)}$$

(b) $\vec{x} = \frac{p^2 \vec{b} + (\vec{a}.\vec{b})\vec{a} - p(\vec{b} \times \vec{a})}{p(p^2 + |\vec{a}|^2)}$
(c) $\vec{x} = \frac{p^2 \vec{a} + (\vec{a}.\vec{b})\vec{b} + p(\vec{a} \times \vec{b})}{p(p^2 + |\vec{a}|^2)}$
(d) $\vec{x} = \frac{p^2 \vec{b} + (\vec{a}.\vec{b})\vec{a} + p(\vec{b} \times \vec{a})}{p(p^2 + |\vec{a}|^2)}$

4. Find a sum of the series:

$$S = \frac{\cos 2x}{1.3} + \frac{\cos 4x}{3.5} + \frac{\cos 6x}{5.7} + \dots = \sum_{n=1}^{\infty} \frac{\cos(2nx)}{(2n-1)(2n+1)}$$

(a) $-\frac{\pi}{2}\sin x + \frac{1}{3}$ (b) $-\frac{\pi}{4}\sin x + \frac{1}{2}$ (c) $\frac{\pi}{2}\sin x + \frac{1}{3}$ (d) $\frac{\pi}{4}\sin x + \frac{1}{2}$

Section 2

Four questions |+4/0 Marks. Each question has Four options. One or more than one of these four options is/are correct answer(s).

5. The value of $\sum_{1 \le i \le j < k \le w \le n} \sum 1$ is (a) ${}^{n+2}C_4$ (b) ${}^{n+1}C_4 + 2{}^nC_2$ (c) ${}^nC_4 + {}^nC_3 + 2{}^nC_2$ (d) ${}^nC_4 + 2{}^nC_3 + {}^nC_2$

6. Let
$$\vec{v_0} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 be a fixed vector and for $n \ge 0$ a sequence is defined as
 $\vec{v}_{n+1} = \vec{v}_n + \left(\frac{1}{2}\right)^{n+1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{n+1} \vec{v_0}$. If $\lim_{n \to \infty} \vec{v}_n = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$, then which of the following options is/are correct?

(a)
$$\alpha + \beta = 2$$
 (b) $\alpha - \beta = 2$ (c) $\alpha\beta = 2$ (d) $\frac{\alpha}{\beta} = 2$

7. Suppose A, B and C are events and the probability of each of these two events is strictly between 0 and 1. Which of the following statement(s) is/are true

(a) A and B are mutually exclusive if and only if not A and not B are exhaustive

(b) If A, B and C are pairwise independent and A is independent of $B \cup C$, then A, B and C are mutually independent.

(c) A and B cannot be simultaneously independent and exhaustive.

(d) An event A is known to be independent of the events B, $B \cup C$ and $B \cap C$, it is also independent of C.

8. If
$$t_1 = (\sin^{-1} x)^{\sin^{-1} x}$$
, $t_2 = (\sin^{-1} x)^{\cos^{-1} x}$, $t_3 = (\cos^{-1} x)^{\sin^{-1} x}$ and $t_4 = (\cos^{-1} x)^{\cos^{-1} x}$

Then which of the following option(s) is/are correct

(a) If
$$x \in (0, \cos 1)$$
 then $t_4 > t_3 > t_1 > t_2$ (b) If $x \in \left(\cos 1, \frac{1}{\sqrt{2}}\right)$ then $t_3 > t_4 > t_2 > t_1$

(c) If
$$x \in \left(\frac{1}{\sqrt{2}}, \sin 1\right)$$
 then $t_2 > t_1 > t_4 > t_3$ (d) If $x \in (\sin 1, 1)$ then $t_1 > t_2 > t_4 > t_3$

Section 3

Six questions. +4/0 Marks. The answer to each question is a NON-NEGATIVE INTEGER.

9. Let $a_1 < a_2 < a_3 < a_4$ be positive integers such that $\sum_{i=1}^4 \frac{1}{a_i} = \frac{11}{6}$. Then $a_4 - a_2$ equals

10. If
$$f(x) = \int_{0}^{1} |x - t| dt$$
 then number of solutions of the equation $x \sin x + \cos x = f(x)$ is
?

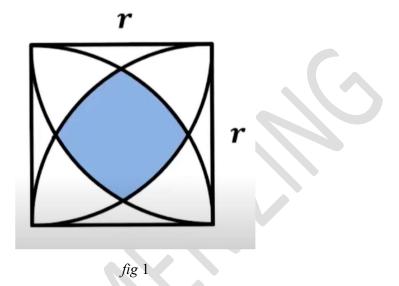
11. Let $X_1, X_2, ..., X_{18}$ be eighteen observations such that $\sum_{i=1}^{18} (X_i - \alpha) = 36$ and

 $\sum_{i=1}^{10} (X_i - \beta)^2 = 90$, where α and β are distinct real numbers. If the standard deviation of these observations is 1, then the value of $|\alpha - \beta|$ is _____?

12. If the tangent at the point $\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$ on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ meets the auxiliary circle in two points and the chord joining them subtends a right angle at the centre. It *e* is eccentricity of the ellipse, then the value of $3e^2$ is ____?

13. Let
$$S = \sqrt{1 + \frac{1}{1^2} + \frac{1}{2^2}} + \sqrt{1 + \frac{1}{2^2} + \frac{1}{3^2}} + \dots + \sqrt{1 + \frac{1}{1999^2} + \frac{1}{2000^2}}$$
, then the value of $|2000(S - 2000)|$ is ____?

14. Four quadrants are drawn inside a square with each side (r = 3 units) as radius (fig 1).



If the area common in all the four quadrants (shaded region) is A, then the integral part of A is _____?

Section 4

This section contains TWO paragraphs. Based on each paragraph, there are TWO questions. ONLY ONE of these four options is correct in each question. +3/-1 marks.

Passage I

If *l* and *m* are variable real numbers such that $5l^2 + 6m^2 - 4lm + 3l = 0$, then variable line lx + my = 1 always touches a fixed parabola, whose axis is parallel to x-axis.

14. Focus of the parabola is

(a)
$$\left(\frac{1}{6}, -\frac{7}{6}\right)$$
 (b) $\left(\frac{1}{3}, \frac{4}{3}\right)$ (c) $\left(\frac{3}{2}, -\frac{3}{2}\right)$ (d) $\left(\frac{3}{4}, -\frac{3}{4}\right)$

15. Directrix of the parabola is

(a) 6x + 7 = 0 (b) 4x + 11 = 0 (c) 3x + 11 = 0 (d) x + 1 = 0

Passage II

If *n* and *k* are integers with $1 \le k \le n$, let f(n,k) be the number of ways of partitioning a set of *n* elements into *k* subsets, each subset with at least two and at most n elements. For example, f(5,2) = 10 because the allowable partitions of $\{1,2,3,4,5\}$ are

 $\{1,2\} \{3,4,5\}; \{1,3\} \{2,4,5\}; \{1,4\} \{2,3,5\}; \{1,5\} \{2,3,4\}; \\ \{2,3\} \{1,4,5\}; \{2,4\} \{1,3,5\}; \{2,5\} \{1,3,4\}; \\ \{3,4\} \{1,2,5\}; \{3,5\} \{1,2,4\}; \\ \{4,5\} \{1,2,3\}$

16. For $2 \le k < n$, f(n+1,k) can be expressed in terms of f(n-1,k-1) and f(n,k) as

(a) f(n+1,k) = n(f(n-1,k-1) + f(n,k)) (b) f(n+1,k) = k(f(n-1,k-1) + f(n,k))

- (c) f(n+1,k) = kf(n-1,k-1) + nf(n,k) (d) f(n+1,k) = n f(n-1,k-1) + k f(n,k)
- 17. The value of f(7,3) is

(a) 25 (b) 35 (c) 70 (d) 105