MATHEMATICS JEE ADVANCED 2024 MOCK 2

Section 1

Eight questions; $+3 / 0$ Marks. The answer to each question is a numerical value. If the numerical value has more than two decimal places, round off to two decimal places.

1. Given $f(x)=x^{13}+2 x^{12}+3 x^{11}+4 x^{10}+\ldots+13 x+14$ and denote $N=f(\alpha) \times f\left(\alpha^{2}\right) \times f\left(\alpha^{3}\right) \times \ldots \times f\left(\alpha^{14}\right)$ where $\alpha=\cos \left(\frac{2 \pi}{15}\right)+i \sin \left(\frac{2 \pi}{15}\right)$. The value of M for which $N^{\frac{1}{M}}=15$ is \qquad ?
2. The number of ways in which 12 identical balls can be grouped into four marked nonempty boxes A, B, C, D such that $n(A)<n(B)$ is \qquad ?
3. Consider the parabolas $(y-k)^{2}=4(x-k)$ and $(x-k)^{2}=4(y-k)$. Let S be the largest circle touching the two parabolas internally in the bounded region. If r is the radius of the circle S, then r^{2} is \qquad ?
4. Three positive real numbers x, y, z satisfy

$$
\begin{gathered}
\mathrm{x}^{2}+\mathrm{y}^{2}=3^{2} \\
y^{2}+y z+z^{2}=4^{2} \\
x^{2}+\sqrt{3} x z+z^{2}=5^{2}
\end{gathered}
$$

Then the value of $2 x y+x z+\sqrt{3} y z$ is \qquad ?
5. If you break a pencil into three parts, the probability that the three parts can be arranged to form a triangle is \qquad ?
6. The area enclosed by $\max \{|x|,|y|\}<2$ and $\| x|-|y||>1$ is \qquad $?$
7. Suppose that both the roots of the equation $x^{2}+a x+2016=0$ are positive even integers, then the number of possible values of a is \qquad ?
8. Let $g(x)=\operatorname{Lim}_{n \rightarrow \infty} \frac{x^{n} f(x)+h(x)+1}{2 x^{n}+3 x+2}, x \neq 1$ and $g(1)=\operatorname{Lim}_{x \rightarrow 1} \frac{\sin ^{2}\left(\pi \cdot 2^{x}\right)}{\ln \left(\sec \left(\pi \cdot 2^{x}\right)\right)}$ be a continuous function at $\mathrm{x}=1$. Assuming $\mathrm{f}(\mathrm{x})$ and $\mathrm{h}(\mathrm{x})$ are continuous at $\mathrm{x}=1$, the value of $4 g(1)+2 f(1)-h(1)$ is \qquad ?

Section 2

Six questions; $+4 / 0$ Marks. Each question has Four options. One or more than one of these four options is/are correct answer(s).
9. Let $f:[0,2] \rightarrow \mathbb{R}$ be a continuous function such that $\frac{1}{2} \int_{0}^{2} f(x) d x<f(2)$. Then which of the following statement(s) is/are must be true?
(a) f must be strictly increasing.
(b) f must attain a maximum value at $\mathrm{x}=2$.
(c) f cannot have a minimum at $\mathrm{x}=2$
(d) f must be an odd function
10. Suppose $a_{0}, a_{1}, a_{2}, a_{3} \ldots$ is an arithmetic progression with a_{0} and a_{1} as positive integers. Let $g_{0}, g_{1}, g_{2}, g_{3} \ldots$ be the geometric progression such that $g_{0}=a_{0}$ and $g_{1}=a_{1}$. Then which of the following statement(s) is/are must be true?
(a) We must have $a_{5}^{2} \geq a_{0} a_{10}$.
(b) The sum $a_{0}+a_{1}+a_{2}+\ldots+a_{10}$ must be a multiple of the integer a_{0}.
(c) If $\sum_{i=0}^{\infty} a_{i}$ is $+\infty$ then $\sum_{i=0}^{\infty} g_{i}$ is also $+\infty$
(d) If $\sum_{i=0}^{\infty} g_{i}$ is finite then $\sum_{i=0}^{\infty} a_{i}$ is $-\infty$
11. A line L passing through the origin is perpendicular to the lines

$$
\begin{aligned}
& L_{1}:(3+t) \vec{i}+(-1+2 t) \vec{j}+(4+2 t) \vec{k} \\
& L_{2}:(3+2 s) \vec{i}+(3+2 s) \vec{j}+(2+s) \vec{k}
\end{aligned}
$$

where t and s are parameters. The coordinate(s) of the point(s) on L_{2} at a distance of $\sqrt{17}$ from the point of intersection of L and L_{1} is/are
(a) $\left(\frac{7}{3}, \frac{7}{3}, \frac{5}{3}\right)$
(b) $\left(\frac{7}{9}, \frac{7}{9}, \frac{8}{9}\right)$
(c) $(-1,-1,0)$
(d) $(1,1,1)$
12. Suppose A and B are two non-singular matrices such that $A B=B A^{2}$ and $B^{5}=I$, then
(a) $A^{31}=I$
(b) $A^{32}=I$
(c) $A B^{n}=B^{n} A^{n+1}$
(d) $A B^{n}=B^{n} A^{2^{n}}$
13. If $I_{n}=\int_{-\pi}^{\pi} \frac{\sin n x}{\left(1+\pi^{x}\right) \sin x} d x, \mathrm{n}=0,1,2 \ldots$ Then
(a) $I_{n}=I_{n+2}$
(b) $\sum_{k=1}^{10} I_{2 k+1}=10 \pi$
(c) $\sum_{k=1}^{10} I_{2 k}=0$
(d) $I_{n}=I_{n+1}$
14. A function $y=f(x)$ satisfying the differential equation $\sin x \frac{d y}{d x}-y \cos x+\frac{\sin ^{2} x}{x^{2}}=0$ is such that, $y \rightarrow 0$ as $x \rightarrow \infty$ then the statement(s) which is/are correct is/are
(b) $\operatorname{Lim}_{x \rightarrow 0} f(x)=1$
(b) $\int_{0}^{\frac{\pi}{2}} f(x) d x$ is less than $\frac{\pi}{2}$
(c) $\int_{0}^{\frac{\pi}{2}} f(x) d x$ is greater than unity
(d) $f(x)$ is an odd function

Section 3

Two Matching list question set; +3/-1 Marks. FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
15. Match the following loci for the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ for $\mathrm{a}>\mathrm{b}$.

(I) Locus of point of intersection of two perpendicular tangents	(P) $\left(x^{2}+y^{2}\right)^{2}=a^{2} x^{2}+b^{2} y^{2}$
(II) Locus of foot of perpendicular from any focus upon any tangent	(Q) $4\left(x^{2}+y^{2}\right)^{2}=a^{2} x^{2}+b^{2} y^{2}$
(III)Locus of foot of the perpendicular from centre on any tangent	(R) $x^{2}+y^{2}=a^{2}$
(IV) Locus of mid points of segment OM where M is the foot of the perpendicular from centre O to any tangent	(S) $x^{2}+y^{2}=a^{2}+b^{2}$

(a) $I \rightarrow S$; II \rightarrow; III $\rightarrow P$; IV $\rightarrow Q$
(b) $I \rightarrow R$; II $\rightarrow S$; III $\rightarrow P$; IV $\rightarrow Q$
(c) $I \rightarrow S$; II \rightarrow; III $\rightarrow Q$; IV $\rightarrow P$
(d) $I \rightarrow R$; II $\rightarrow S$; III $\rightarrow Q$; IV $\rightarrow P$
16. $|x|$ represents modulus functions, $[x]$ represents greatest integer function, $\{x\}$ represents fractional function. Match the functions in List I with number of real solutions in List II.

(I) $\|2 x-1\|=3[x]+2\{x\}$	(P) 0
(II) $\log _{\frac{3}{4}}\left(\log _{8}\left(x^{2}+7\right)\right)+\log _{\frac{1}{2}}\left(\log _{\frac{1}{4}}\left(x^{2}+7\right)^{-1}\right)=-2$	(Q) 1
(III)The number of pairs of integers (x, y) satisfying the equation $x y(x+y+1)=5^{2018}+1$ is	(R) 2
(IV) $x^{2}=e^{x}$	(S) 3

(a) $1 \rightarrow Q$; II \rightarrow; III $\rightarrow P$; IV $\rightarrow R$
(b) $I \rightarrow R$; II $\rightarrow S$; III $\rightarrow Q$; IV $\rightarrow Q$
(c) $I \rightarrow R$; II \rightarrow; III $\rightarrow Q$; IV $\rightarrow R$
(d) $1 \rightarrow Q$; II \rightarrow; III $\rightarrow P$; IV $\rightarrow Q$

Section 4

Two questions based on the given passage. ONLY ONE of these four options is correct in each question. $+3 /-1$ marks.

Let $f(x)=12 x^{2} \int_{0}^{1} y f(y) d y+20 \int_{0}^{1} x y^{2} f(y) d y+4 x$
17. The maximum value of $f(x)$ is
(a) 8
(b) $1 / 8$
(c) 16
(d) $1 / 16$
18. The range of $f\left(-2^{x}\right)$ is
(a) $(-\infty, 0)$
(b) $(0, \infty)$
(c) $\left(-\infty, \frac{1}{8}\right)$
(d) $\left(\frac{1}{8}, \infty\right)$

